
STABILITY OF A GROWING VISCOELASTIC REINFORCED ROD 

SUBJECTED TO AGING 

N. Kh. Arutyunyan, M. N. Mikhailov, 
and V. D. Potapov UDC 539.376 

The stability of growing nonuniformly aging viscoelastic reinforced rods is investigated. 
The equations of state of a viscoelastic material are described by the equations of visco- 
elasticity theory of nonuniformly aging bodies [i], and the strains and stresses in the rein- 
forcement are related to each other by Hooke's law. The rod is acted on it its own weight 
and a concentrated'force which varies in time. 

The stability condition of the rod is obtained on a semi-infinite time interval. The 
determination of stability corresponds to the determination of the stability of dynamical 
systems in the Lyapunov sense. The problem of stability of a rod on a finite time interval 
has been investigated. The adopted fQrmulation of the stability problem on a finite time 
interval is based on investigati~ms of the stability of dynamical systems of N. G. Chetaev. 

The stability of nonuniformly aging reinforced viscoelastic rods in the case in which 
the transverse cross section and length of the rod remained constant in the deformation 
process has been studied in [2, 3]. 

i. Model of a Growin$ Reinforced Viscoelastic Rod Subjected to Aging. We shall consider 
a hollow rod which grows both in the longitudinal, i.e, along the rod axis, and in the trans- 
verse direction. For the sake of simplicity we shall assume thatthe transverse cross section of 
the rod has two symmetry axes; the reinforcement is distributed symmetrically with respect to 
these axes. We shall assume without loss of generality that the initial length of the rod ~o 
is equal to zero. 

Let the variation law of the rod length in time l(t) be specified! l(t) is a bounded 
pieeewise-contin~aous monotonically increasing function. We shall denote the time at the 
conclusion of which the length of the growing rod reaches the value s as T~(s). It is evident 
that T~(s) = Z-*(s). Here l -I is the inverse function to I. 

We shall assume that the length of the reinforcing elements at the time under discussion 
is equal to the rod length l(t). Actually, the length of the reinforcing elements can exceed 
the length of the main material, as often happens, for example, in the fabricatfon of tall 
iron-concrete columns. In case of necessity this peculiarity can be taken into account in 
setting up the equations which describe the deformation process of the rod. 

The kinematics of the rod growth in the transverse direction can be diverse. TwQ of its 
possible mechanisms have been discussed in detail in [4]. Assuming this or the other growth 
mechanism, one can determine the time of creation of the main material T*(p) in the neighbor- 
hood of the point with the coordinates p = {x, y, s}. 

Starting from the time Te, the formation of a body which for simplicity's sake we shall 
consider to be absolutely rigid (a disk) occurs on the end of the rod. We shall denote the 
height of the disk up to time t by Z(t). 

The equation of state for a nonuniformly aging viscoelastic material in a uniaxial stress 
state shall be taken in the form [i] 

t 

(9, 0 = E (t - -  ~* (O)) ~ (P, t) - -  [ R ( t - - ~ * ( p ) , ~ - - ~ *  (P)) 8 (p, %) d~, 
T*(O) 

where  o and r a r e  t h e  s t r e s s  and s t r a i n  i n  t h e  g r ow i ng  r o d ,  E ( t )  i s  t h e  modu lus  o f  t h e  
e l a s t i c a l l y  i n s t a n t a n e o u s  s t r a i n s ,  and R ( t ,  T) i s  t h e  r e l a x a t i o n  k e r n e l  o f  t h e  a g i n g  v i s c o -  
e l a s t i c  m a t e r i a l  o f  t h e  r o d .  
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The stresses Jr and strains gr in the reinforcement satisfy Hooke's law, i.e., the 

equality 

%(t, p ) = ~ r ( / ,  f,) 

holds, where E r is the modulus of elasticity of tlle reinforcing material. 

2. Equation of Motion of a Growing Reinforced Viscoelastic Rod. The process of defor- 

mation of a growing viscoelastic rod in which its axis maintains a rectilinear vertical posi- 
tion can be treated as slow motion. We shall call it the unperturbed motion. Next we shall 
assume that in the absence of external loads and under the condition of weightlessness of the 

rod its axis has an initial curve (an initial perturbation) in the y0s plane which is de- 
scribable by the function Wo = Wo(S). Under the action of its own weight and the weight of 
the heavy disk the rod receives an additional deflection (the desired perturbation) w = 
w(t, s) which depends on the coordinate s and the time t. As a result the rod elements are 
displaced not only in the vertical but also in the horizontal direction. We shall call such 
motion of the rod perturbed. 

The bending moment acting in the yOs plane in the cross section of the rod with the 
coordinate s at time t is equal to 

M (t, s) = ~ (s); ~ e~ (t, p) ydF + F((,s) '[ [F ( t - -~ * (p ) )e (p , t ) - -  ( 2 . 1 )  

-- ~ ~ (t -- (p), ~ -- ~* (p)) e (p, ~) & ydF. 
~*(p) 

Here F(t, s) and Fr(s) are the areas of the transverse cross section of the viscoelastic 
material and the reinforcement in the cross section with coordinate s at time t. 

We shall assume when finding the strains that the transverse cross section of the rod, 
whose position at time rz(s) was determined by a flat inner contour perpendicular to the 
curved axis of the rod, remains flat and perpendicular to the curved axis of the rod also 
at the time t. In other words, the particles created at the time T*(O) and which appeared 

in a s~ngle plane perpendicular to the curved rod axis with the othef points created in the 
interval (T~(s), r*(p)) remain with them in the same plane at any time t, and this plane is 
perpendicular to the curved rod axis. 

Due to this hypothesis we have for the strain the expression 

e(p, t ) =  ~• ~ ,b ,  (2.2) 
where A• s) : • s) -- • , and 

• (t, , ) o ~  rw (t, s )+  % ( s ) ] O & ~  ~ _ L T §  (t, s ) o w o  (s)12~-1/'o, J J -- a~w~ (s)O&~ -LTJ[~176 (s)]2l-r'2J ( 2 . 3 )  

is the variation of the rod curvature at time t in comparison with the initial curvature in 
the cross section with coordinate s. 

If the deflection of the rod w(t, s) + Wo(S) is small, i.e., one can neglect the 

t % {O [u,(t, s)q-w o (s)]) in comparison with unity, then quantity 7s 

• s) = a%v(t, s)/as 2 (2.4) 

and t h e  d e p e n d e n c e  ( 2 . 1 )  w i t h  t h e  e x p r e s s i o n s  ( 2 . 2 )  and ( 2 . 3 )  t a k e n  i n t o  a c c o u n t  w i l l  t a k e  
the form 

M (t, s) = Er J r  (s) An (t, s) -I- E J  (t, s) • (t, s) --  

j I I 
_,v(t ,s) F(t,s) ~*(p) 

t 
o 

X dF -~ It (t - -  "r (p), T -- ~* (p)) • (I* (p), s) dTy~dF, 
F(t,s) 1"* (p) 

(2.5) 

797 



where 

Jr ('r y~dF, E](t,s)= .I E(t--~*(O))!/2dF. 
Fr~(s) F(t,s) 

As is well known, 

B(t, x ) =  cOL(t, ~)/Ov, ( 2 . 6 )  

where L(t, T) = E(T) -- Q(t, T), E(T) is the modulus of the elastically instantaneous strain, 
and Q(t, T) is the relaxation measure, with Q(t, t) = 0. 

Let us transform the last term in Eq. (2.5) with the relationship (2.6) taken into account 

t 

F(t,s) ,~*(p) F(t,s) 
(~* (p), .9 [E (t - r*  (p)) - C (t - -  r*  (p), O)l ~ d F .  

Then one can represent the expression (2.5) in the form 

M (t,  s) = Er./" r (s) An (t,  s) + E3- (t ,  s) ~ (t ,  s) - -  

.f_ (P)' o) x ('~* (p), 0 - .~ n (t - ,~* (p), -~ - ,~* (p)) ,~ (.~, .) d,~ 
Y(t,s) x* (p) 

y2 d F. 

Taking into account the specific mechanism of growth of the rod, 
integration order in the double integral 

t t 

* x*(p) 
x 1 (s) 

R (t - "~* ( p ) , ,  - I:* (p)) n 0:, s) d':y ~ ( ,*  (p)) a F (,*(p)) = 

t 

= # R( t ,  ~ )~0 : ,  s) dx, 

~i (s) 

one can change the 

where 

(t, x) = i n (t - ~,* (p), x - ~* (p)) y~(x* (p)) de  (x* (p)). 

x 1 (s) 

One can call the function R(t, T) the reduced relaxation kernel of the viscoelastic rod 
material in the cross section with the coordinate s. 

We find by direct substitution that the equality 

t 

M (t, s) = ErJr (s) An (t ,  s) -1- ~ (t ,  t ,  s) ~: (t,  s) - -  j"  ~ (t,oi "r s) ~ (T, s) d'r 

~1 (s) 

(2.7) 

occurs for a viscoelastic reinfored rod, where 

Z(t ,  "c, 0 = L (t - -  ~, ~ - ~) y2 (~) dF (~). 

q(s) 

Next we shall write the equation of quasistatic equilibrium of the rod 

O~M (t, ~) 0 [  0 [w(t' 0 + "o (")l}' as 2 --  - -  ~ N (t, 4 
(2.8) 

where 
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t(t) 
iv (t, ,) ~ t- ~ F (P'),z,~d, + qz (t), 

F(l,z) 

p(p') is the specific weight of the rod material, p' = {x, y, z}, q is the weight of unit 
length of the disk~ and Z(t) ~ 0 for t < To. 

If the upper end of the rod is free, Eq~ (2.8) will take the form 

] 
o 

= - N (t, ,9 ~ ["  (t, s) + w o (@]. 

(2.9) 

In the particular case in which growth of the rod occurs only in the direction of the 
s axis, Eq. (2.9) is transformed to the form 

t 

&s, (.~) A~, (,, ,) + E ( t -  q (,)) ] (s) >, (t, , ) -  ] (,) R ( t - ~ ,  (,). 

t l  ('9 

(2.10) 

The solutions of Eqs. 
satisfy the following boundary conditions: 

ow (t, s) s=O: w ( t ,  s) - -  Os = 0 ,  

|0, O ~ < t < T  o, 

s = l ( t ) :  M(t,s):-] . . t ._t  qZ 2 ( t ) ~  w( t , s )+w o(s)], 
t z  os [ 

(2.9) and (2.10) in the case of sealing of the lower end should 

(2.11) 

i 

t >  T o. 

The integrodifferential equation (2.9) obtained is the equation of the perturbed motion 
of a reinforced nonuniformly aging viscoelastic growing rod. 

3. Variational Formulation of the Problem of the Longitudinal Deflection of a Growing 
Reinforced Viscoelastic Rod. Variational methods [5] prove to be advisable sometimes in 
obtaining the solution of viscoelasticity problems. They are especially effective in those 
cases in which the Volterra principle is inapplicable. The problem of the accretion of 
viscoelastic bodies (in particular, the problem under discussion here of a growing rod) is 
one of these examples. 

On the basis of the Lagrange principle the work of the internal forces ~U in the body 
by possible displacements which are in agreement with the geometric boundary conditions should 
be equal to the work of the external forces 6A by those same displacements: 

6U = 8A. (3.1) 

Considering variations of the instantaneous values of the displacements, and consequently 
also the strains Be(t, p), we write 

= [ ~(t ,p)Se(t ,p)dV ~U 
~(O+v(t)  

o r  

~u= [ E,,,(t,O)~,(t,p)dV+ S [e(t--~*m)),(t,p)-- 
r v(t) 

' R(t--,* ,* d,] -- [_. (0), t -- (p)) e ( t ,  o) 6e (t, P) dV, 
t*(O) 

(3.2) 
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where V(t) is the volume occupied by the viscoelastic material and Vr(t) 
by the reinforcement. 

Let us introduce the potentials 

t 
t" n (t - "~* (p), x ~ ~* (p)) 8 (x, P) d~. U 1 8 (t, p) 

'~*(p) 

is the volume occupied 

From this follows 
O O ~ r  

o (t, o) = ~ (% + "0'  ,r, (t, ~,) = "o~ (t, O' 

Then 

8e(t,p) Oe~,p-----)(Uo+uz)dV+ ~ 88(',p) OUr 
Os r (t, p) 

v(t) v r ( 0  

- -  dV.  

Determining the variation of the strains ~e(t, p) by the expression 

/Se(t, p) = 8• s)v, ~• s) ,~ O~6w(t, s)/Os ~, 

we represent Eq. (3.2) in the form 

. z(o [ z(t) 
6U----.t 6~(t)  s) S Erer ( t 'p )  gdFds+ ~ 5• ~ E(t--T*(p))8(t ,p)--  

o 1~ r (0 o FCt,s) 

. t (t ] ~" n - x* (p), x - x* (p)) e ('~, p) a'c VaPds 
~*(p) 

( 3 . 3 )  

or 

A is the work of the external forces and 

z(o 
8u = S M (t, s) 8~ (t, 0 as. 

0 

I t  i s  e v i d e n t  t h a t  Eq .  ( 3 . 1 )  i s  t h e  m i n i m a l i t y  c o n d i t i o n  o f  t h e  f u n c t i o n  D = U -  A, w h e r e  

Vr(O V(O 

Considering a rod for which the boundary conditions (2.11) are satisfied, we find the 
work A of the external forces which is done by them upon deformation of the rod. It is made 
up of the work of the distributed forces of its own weight and the weight of the disk. Restrict- 
ing ourselves to the case of small displacements, we obtain 

$ 

A(t) = ~ p (P) j LL""~--~ -t- o~ + . - - ~ - - j  ~d~dV--~ 
Vr(O+V(O o 

z~o t  z(O i Ow(t,~) , 

0 

,,.','>>- ,(o.,..,,>.,> .r<o. , , . . ,  
0 

-- \-- Os + ~ 1  [s=Z('c*(Z))J) 

where T*(Z) is the time of creation of the elements of the rigid disk with the coordinate Z 
and r*(9') is the time of creation of the rod element with the coordinates p' = (x, y, ~}. 
It is assumed here that Z(t) ~ 0 for t < To- 
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The variation of the work of the external forces is equal to 

y f [ O , v ( t ,  ~ ) a ~ v  o (~)] O~w(t,~) 
6A (t) =: p (9) ~ -i- - - ~ J  ~ d~dV + 

Y r (t)+V(t) o 
(3.4) 

+qZ(i)[~It)fa~(t'~)~-a'~176 L ~ '  ~ J  ~ a$ +z L[a~(t'~)~ +'---gT-~ ] - --gT---  ,=t<t) dZ. 

If the variation of the deflection 6w(t, s) satisfies the conditions ~w(t, s) = 3$w(t, s)/ 
3s = 0 at s = 0, one can show that the variational problem under discussion is equivalent to 

the boundary-value problem (2.9) and (2.11). 

4. Stability of a Growing Reinforced Viscoelastic Rod on a Semi-Infinite Interval. We 
shall assume in what follows that at each fixed time the stability condition of an elastic 

rod is observed. Therefore 

l < ~ , a ,  t ~  To; 1 < % 2 ,  t > T o ,  

where Xx and X2 are the minimum eigenvalues of the following boundary-value problems: 

0 [ O2w(t,s) ] . 4_L iNp( t , s )  Ow(t,s) 
-~s EYred(t,s) Os ~ ' Os - -0 ,  t ~ T  O , 

Ow (t, s) O~w (t, s) 
s = 0 :  w ( t ,  s) - -  Os = 0 ;  s = l ( t ) :  Os 2 - -0 ;  

0 [ o2w (t, s) ] Ow (t, s) Ow (t, s) 
07 L E~ea (t, s) Os-----T-- ] + N v (t, s) ~ -q- Z~qZ (t) 0-----7-- -- O, t > To, 

am (t, s) O~m (t, s) Z 2 (t) am (t, s) 
s = O: w (t, s) -- Os = O; s = l (t): EJed( t ,  s) cg"-'-"s~ -- q ~ Os ' 

,I _ E(t--~*(P))Y2df iS the reduced stiffness of the transverse cross section E~ed(t ,  s) E a f a  (s) + 
F(t,s) 

of the rod, and Np(t, s) is the normal force created by the rodTs own weight. 

We shall assume that for the mechanical and geometrical characteristcs of the rod and 
the concentrated force qZ(t) the following limiting relationships are valid (R~ -- T) is 
some difference kernel): 

lira E (t - -  ~* (p)) J EO, lira R (t - -  "r* (9), x - -  x* (p)) = R ~ (t - -  ~), 
t~oo  T..-> oo 

t > T  

l i m l ( t ) = l  o, l i m F ( t , s ) = F  o(s), 

lira EJred(t, s) = Eor o (s), l ira qZ (t) = qZ o. 

(4.1) 

Then using the procedure suggested in [3], one can show that in this case a growing 
viscoelastic rod possessing the aging property is stable on a semi-infinite time interval in 
the Lyapunov sense if an elastic rod whose geometrical characteristics are determined by the 
limiting values (4.1) is stable and the modulus of elasticity of the main material is equal 
to the long-term modulus of elasticity 

E ,  = E o -  S R ~  
o 

5. Stability of a Growing Reinforced Viscoelastic Rod on a Finite Interval. The in- 
vestigation of the stability of a growing viscoelastic rod on a finite time interval takes 
on fundamental meaning in estimating the behavior of such a rod. We note that different 
formulations of the problem are possible here. We shall consider two of them. 

i. Let a finite time interval [0, T] be specified. It is necessary to determine the 
critical values of the parameters determining the growth of the rod (for example, the values 
of the rates which characterize the growth of the rod in the longitudinal and transverse 
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directions, the variation law of the effective load in time, and so on) for which the maximum 
additional deflection w(t, s) does not exceed the value w* specified in advance: 

s u p s u p l u , ( t , s )  I < w*,t ~ [0, T l ,  s ~ [0 , / ( t ) ] .  
s t 

2. The value of the limiting permissible value of the deflection w* is known. It is 

necessary to determine the time t*, called the critical time, at which the maximum value of 

the rod deflection first becomes equal to w*: 

m a x  7(t)  = w*, ~ ( t )  = m a x  [w(t, s)l, s ~ [0, /(t)].  
s 

It is necessary for the investigation of the formulated stability problem to obtain a 

solution of the boundary-value problem (2.9) and (2.11) or the variational problem (3.1). 

We shall consider a growing rod with transverse cross section in the form of a circular 

ring whose inner radius ro is constant and whose outer radius of an arbitrary cross section 
with the coordinate s varies according to the law r = r(t, s). Let the relaxation kernel of 

the aging viscoelastic material be [6] 

n(t, ~) = - ~ - ~  {~ (~) [ l  - o - ~ t - ~ ) ] } ,  E (t) = E o = eons t ,  ( 5 . 1 )  

where m(T) is the aging function and y is some constant. 

where 

Then we have 

Z(t, x, s) --- Ix~(% s) -t- rt~(~, s )e -r ( t -% 

r(z,s) 

t q  (~, s) = z " J' [E  o - -  co (~ - -  ~* (r,  s))] F3dr~ 

t o 

rC~,s) 
:X _f co(~--x* (r,s))rSdr, (~, 8) ~2 

tO 

and T*(r, s) is the time of creation of a thin annular element of radius r in the cross sec- 

tion with coordinate s. 

For relaxation kernels of the form (5.1) the integrodifferential equation (2.9) reduces 

to the following differential equation in partial derivatives: 

[~ ~, (;~ + ~,;0 + (~  + ~) ;~ + Olz + ~i~ + ,~ )  ,i], = - IN (,,+%)'1 "'--V[N (w+~o)'l. 
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with the boundary conditions (2.11) and the initial conditions which follow from Eq. (2.9): 

t =- ~ (~): [(t,~ t~) • = - N (w + ~o)'- 

[G ~ ~ + (tt~ + p~)h + ~ x l '  = - [ N ( w  + ,,,o)' 1"-- ~N(~ + wo)'. 

A derivative with respect to the time t is denoted here by a dot, and a derivative with 
respect to the coordinate s is denoted by a prime. 

6. Numerical Example and Analysis of the Results Obtained. Let us consider a rod of 

annular transverse cross section whose inner radius is kept constant along its length and 
whose outer radius and length vary in time according to the laws 

r ( t , s )  - r  0 - ~ r  0 --~ ( 6 . 1 )  

l (t) ---- "~- (1 - -  e-Ctt), ( 6 . 2 )  

where k, e, and Vo are some constants. 

We shall take the function ~(T) in the form 

co(~) = co A-- Aoe - i~ ,  co, Ao -- const. 

The additional deflection is found as a solution of the variational problem; the initial 
and additional deflections of the rod are represented in the form of finite summations (n is a 
natural number) 

n n 

w o (s) = ~1, aloSi+l, w (t, s) = ~  a i (t) s TM. ( 6 . 3 )  
{=i i=l 

Calculation of the integrals along the length which appear in t~e relationships (3.3) and 
(3.4) is done with the help of Simpson's formula, and the time integrals are replaced by 
finite summations with the help of the trapezoid formulas. As the numerical investigations 
have shown, one can restrict onself to keeping the first 2-3 terms in the expressions (6.3) 

in order to obtain satisfactory results, and one can divide the rod into 8-16 equal parts 

along its length. Concerning the choice of the time step, it depends both on the rate of 

growth of the rod and on the rheological properties of the material and should therefore be 
specially selected in each specific case. 

The results of the solution of the problem for a rod with the following characteristics 
are presented in Figs. 1-5: Eo = 2 x 104 MPa, Ao = 1.5 • 104 MPa, co = 0.15 x 104 MPa, 
vo/~ = 50 m, p = 25 kN/m 3, q = 0, alo = 4 x 10 -5 m, a2o = ... = 0, B = 0.005 day -I, ro = 0.25 
m, and k = 0.005. 

It is interesting to note that the size of the deflection even of an elastic rod can 

depend in the limit on the nature of its growth. Thus if one considers a nongrowing rod 50 m 
fn length with an outer diameter of i~0 m and loaded by its own weight, the line of additional 
deflection is traced by curve i' in Fig. la. Now we shall assume that growth of the rod 

occurs only in the axial direction and its outer diameter remains constant and equal to 1.0 m. 
In this case as the rod grows its line of additional deflection approaches the very same curve 

i'. If growth of the rod occurs in accordance with the expressions (6.1) and (6.2), the lines 
of additional deflection of the rod at times t' = at = I, 2, 3, 4, 5, and i0 have the form 
shown in Fig. la by curves 1-5 and i0, independently of the values of the parameter ~ (~ # 0, 

# ~). The variation in time of the additional deflection for cross sections A and B with 
coordinates equal respectively to 19.6735 m (curve I) and 43.2332 m (curve 2) with vo = 5 
m/day and ~ = 0.i day -I is shown in Fig. 2. 

The behavior of a growing viscoelastic rod differs significantly from the behavior of a 
growing elastic rod. The forms of the lines of additional deflection obtained for ~ = 0.I 
day ~I and vo = 5 m/day are presented in Fig. ib for t = i0, 20, o.., 150 days, and the varia- 
tion in time of the additional deflection for the cross sections A and B is shown in Fig. 2 
by curves 3 and 4. The analogous curves 5 and 6 obtained for ~ = 0.2 day -I and vo = i0 m/day 
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are given in Fig. 2 for comparison. As is evident, the rate of growth of the rod turns out 

to have an important effect on the size of the deflection of the rod in each cross section. 

The variation in time of the additional deflection for the cross section B with B = 
0.005 and 0.020 day -I (curves 1 and 2, respectively) is shown in Fig. 3 as an estimate of the 

effect of the aging rate of the material on the deflection characteristics of a growing rodl 
= 0.i day -I and Vo = 5 m/day. As is evident, an increase in the aging rate of the material 

leads to an appreciable decrease in the rod deflections. 

Next we shall consider a viscoelastic rod whose growth occurs in a form which consists of 
two cylindrical tubes 1 cm thick each (Fig. 4a) and with diameters of the medial surface 
equal to 0.49 and 1.01 m, respectively. These shells are inserted one inside the other so 

that their longitudinal axes coincide. The space between them is filled with a viscoelastic 
aging material; a variation in time of the volume occupied by them occurs in accordance with 

the expressions (6.1) and (6.2). The shell material is elastic with a modulus of elasticity 
Er = 2.1 • l0 s MPa. One can consider a rod obtained in this way to be a reinforced rod under 
conditions of coupling between the shells and the viscoelastic material, for the determination 

of whose deflection the equations written above can be used. 

The dependences between the additional deflections of the rod in the cross sections A and 
B and the time which correspond to growth rates ~ = 0.i day -I, Vo = 5 m/day (curves i, 2), 

= 0.2 day -I, vo = i0 m/day (curves 3, 4), and B = 0.005 day -I are presented in Fig. 4b. It 
follows from Fig. 4b that reinforcement of the rod leads to a noticeable decrease of the rod 
deflections and the effect of the growth rates on the sizes of the deflections proves to be 

qualitatively the same as in an unreinforced growing rod. 

The dependences t, ~ vo for unreinforced (curves I, 2) and reinforced (curves 3, 4) growing 
rods corresponding to values of the permissible deflection IwI: 0.05, 0.03, 0.02, and 0.01, 
respectively, are shown graphically in Fig. 5. As is evident, an increase in the growth rate 
of the rod leads to a significant decrease in the value of the critical time; the larger the 
value of lw[ is, the sharper is the decrease of the time t, observed as vo increases. 
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In conclusion we shall make a remark about the determination of the initial deflection 
of the rod wo(s). We shall assume that as the rod grows in the axial direction its deflection 
along its length is measured and then the curvature for each cross section is found. In the 
absence of a disk on the free end of the rod the bending moment at s = l(t) is equal to zero. 
Consequently, the curvature of the rod in this cross section is equal to the curvature xo(s), 

which is dependent only on the initial deflection Wo(S). Knowing the curvatures • for 
each cross section of the rod, one can find the functionwo(s) if one assumes the value of the 
derivative ~Wo(S)/~s at s = 0 to be known (one can set the quantity Wo(0) equal to zero). In 
the case in which there is a rigid disk on the rod end, the value of the curvature of the 
rod axis on its end is found, from which the increment to the curvature produced by the 
bending moment created by the disk in the extreme upper cross section is subtracted. The 
indicated difference is evidently equal to the curvature ~o(s). 

As we see, the determination of the initial deflection wo(s) in a growing rod encounters 
some difficulties. One can overcome them by solving the following problem, which is not only 
of interest from the standpoint of the search for the initial deflection of a growing rod but 
also permits obtaining the solution of an actual engineering problem. 

We shall assume that in the course of rod growth a measurement is made of its deflection 
in time and along its length. After completion of the rod growth (as the time segment [0, 
tl] runs out) the deflection continues to vary in time due to the viscous properties of the 
material. It is necessary to predict what value it will reach at the expiration of the time 
interval [0, t], t > tl. In order to obtain an answer to this question, one can first solve 
the inverse problem for the time segment [0, t,], i.e., find the deflection Wo(S) from the 
known deflections of the rod by solving the boundary-value problem (2.9) and (2.11), and then 
solve the direct boundary-value problem, i.e., determine the function w(t, s) from the function 
Wo(S) found for the time interval [0, t]. 
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